Counting zero kernel pairs over a finite field
نویسندگان
چکیده
منابع مشابه
Counting Nilpotent Pairs in Finite Groups
Let G be a nite group and let i (G) denote the proportion of ordered pairs of G that generate a subgroup of nilpotency class i. Various properties of the i 's are established. In particular it is shown that i = k i jGj=jGj 2 for some non-negative integers k i and that P 1 i=1 i is either 1 or at most 1/2 for solvable groups.
متن کاملenumerating algebras over a finite field
we obtain the porc formulae for the number of non-associative algebras of dimension 2, 3 and 4 over the finite field gf$(q)$. we also give some asymptotic bounds for the number of algebras of dimension $n$ over gf$(q)$.
متن کاملenumerating algebras over a finite field
we obtain the porc formulae for the number of non-associative algebras of dimension 2, 3 and 4 over the finite field gf$(q)$. we also give some asymptotic bounds for the number of algebras of dimension $n$ over gf$(q)$.
متن کاملCounting Matrices Over a Finite Field With All Eigenvalues in the Field
Given a finite field F and a positive integer n, we give a procedure to count the n×n matrices with entries in F with all eigenvalues in the field. We give an exact value for any field for values of n up to 4, and prove that for fixed n, as the size of the field increases, the proportion of matrices with all eigenvalues in the field approaches 1/n!. As a corollary, we show that for large fields...
متن کاملCounting curves over finite fields
Article history: Received 25 August 2014 Received in revised form 10 September 2014 Accepted 18 September 2014 Available online 4 November 2014 Communicated by H. Stichtenoth MSC: 11G20 10D20 14G15 14H10
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2016
ISSN: 0024-3795
DOI: 10.1016/j.laa.2016.01.029